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1 SPLICING CODE MODEL ARCHITECTURE

Supplementary Table S1: Autoencoder(AE) and Variational Autoencoder(VAE) Architecture

Name Hidden units and layers Activation Function

AE200 1357, 850, 500, 200, 500, 850, 1357 tanh
AE400 1357, 850, 500, 400, 500, 850, 1357 tanh
AE500 1357, 850, 500, 850, 1357 tanh
AE600 1357, 850, 600, 850, 1357 tanh
VAE100 1357, 850, 500, 100, 500, 850, 1357 tanh
VAE200 1357, 850, 500, 200, 500, 850, 1357 tanh
VAE500 1357, 850, 500, 500, 500, 850, 1357 tanh

Supplementary Table S2: Feed Forward Network Architecture

Name Hidden units and layers Activation Function

AE500-encoded Network 500, 500, 200, 50, 6 ReLU

Supplementary Table S3: Combined Encoder Feed Forward Network Architecture

Name Hidden units and layers Activation Function

Combined AE500-encoded Network 1357, 850, 500, 500, 200, 50, 6 ReLU
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2 MNIST DIGIT MODEL ARCHITECTURE

Supplementary Table S4: Autoencoder(AE) and Variational Autoencoder(VAE) Architecture

Name Hidden units and layers Activation Function

VAE50 784, 500, 500, 50, 500, 500, 784 ELU, tanh

Supplementary Table S5: Feed Forward Network Architecture

Name Hidden units and layers Activation Function

VAE50-encoded Network 50, 400, 200, 50, 10 ReLU

Supplementary Table S6: Combined Encoder Feed Forward Network Architecture

Name Hidden units and layers Activation Function

Combined VAE50-encoded Network 784, 500, 500, 50, 400, 200, 50, 10 ELU, tanh, ReLU

3 PATH INTERPOLATION

The number of points used to interpolate paths between a sample and a baseline was selected by
estimating the relative numerical integration error for paths between randomly sampled pairs of
points. Relative error was estimated in two ways: (1) sum error, and (2) median reinterpolation
error.

Sum error is described in (1) and uses the property:

∑
attributions(f, γ[a→ b]) =

∑∫
γ[a→b]

∇f dγ

=

∫
γ[a→b]

∑
∇f dγ

=

∫
γ[a→b]

∇f · dγ

= f(b)− f(a)
We define the sum error as the relative difference between the left-hand-side and the right-hand-side
of the equation, using the numerically calculated attributions for the left hand side. Specifically:

sum error (relative) =
|RHS− LHS (numerical)|

ε+ |RHS|
.

Median reinterpolation error is obtained by comparing attribution estimates from a path with the
given number of points to a refined path with additional points interpolating between the original
points. For a given feature, we say that g∗ is the true attribution which is being estimated numerically
by g(n) for a path with n points. Then, reinterpolating with r points, we estimate the relative error
for the feature attribution as:

2× |g(n)− g(rn)|
ε+max(|g(n)|, |g(rn)|)

.

This gives a relative error estimate per feature for a path between points. The median reinterpolation
error is the median of these estimates across features.
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We calculated these estimates for 200 pairs of randomly selected points in our dataset using linear
paths, comparing 50, 100, 250, 500, and 1000 points in the path. We found that 51% of the replicates
have zero relative error regardless of estimation method or number of points, and 2% of the replicates
have outlying sum errors greater than 105 due to a negligible difference between predictions for the
source and destination points. Plots of relative error (sum error and median interpolation error) are
found in Supplementary Figure S4. We decided to use 250 points for our subsequent experiments as
it had an acceptable relative error.

4 PLOTTING DETAILS FOR REAL PATHS ON SPLICING DATA (FIG 1A, BOTTOM
PANEL )

The plot shows PC1 (horizontal axis) versus PC2 (vertical axis) of original feature space(1, 357
features) trained on splicing data. The scattered gray points are subset of input data in the PC space.
Black, red, blue paths show linear, latent-linear, and neighbors paths between the same source and
destination points (matching conceptual/illustrative figure 1a, top panel). Source point is picked
randomly and the destination point is picked to maximize distance from source point in PC space
(10 components). Neighbors path is approximation, i.e., computing neighbors distances on first 10
principal components due to computational overhead. Random seeds were manually selected to
highlight differences between linear and latent linear paths.
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Supplementary Figure S1: Splicing code architecture. a, Illustration of the autoencoder architec-
ture for the splicing code. b, Illustration of the variational autoencoder architecture for the splicing
code. The latent layer learns mean µ and standard deviation σ of the a Gaussian distribution from
which samples are drawn for the decoder. c, Illustration of the Feed forward network for the splicing
code. The latent layer from a is input to the model. The output of the model contains three targets:
TΨe,c

is the expected PSI value of the event e in condition c, T∆Ψinc,c,c′ captures the dPSI for events
with increased inclusion between condition c and c′ and T∆Ψexc,c,c′ captures the dPSI for events
with increased exclusion between condition c and c′. d, Combined network from the encoder of the
autoencoder in a and the feed forward network from c.
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a. Variational Autoencoder b. Feed Forward Network
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Supplementary Figure S2: MNIST handwritten digit architecture. a, Illustration of the variational
autoencoder architecture for the digits model. The latent layer learns mean µ and standard deviation
σ of the a Gaussian distribution from which samples are drawn for the decoder. b, Illustration of
the Feed forward network for MNIST handwritten digit task. The mean layer µ from a is input to
the model. The output is a softmax over 10 digits. c, Combined network from the encoder of the
variational autoencoder in a and the feed forward network from b.
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Stability of different autoencoders and variational autoencoder representations 
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Supplementary Figure S3: Stability analysis of autoencoders and variational autoencoders for
the splicing code. Spearman rank correlation of the pairwise distances among training points in la-
tent space between different autoencoders and variational autoencoders. The distances are calculated
for three randomly selected subset of training points to calculate the standard error. Supplementary
Table S1-S6 describe the architecture of these networks.
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Estimated relative error as a function of the number of interpolating points

Supplementary Figure S4: Estimated relative error as a function of the number of interpolating
points. The plots show relative error, as estimated by (left) sum error and (right) median reinterpo-
lation error, versus an increasing number of points used to create a path between points. The relative
error distributions are estimated over 200 pairs of randomly sampled points in the data, interpolated
by each of the described number of points. 51% of the replicates have zero relative error regard-
less of estimation method or number of points and are excluded from the plot. 2% of the replicates
have outlying sum errors greater than 105 due to a negligible difference between predictions for the
source and destination points and are excluded from the plot.
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a. kmeans constitutive baseline b. close constitutive baseline

c. random constitutive baseline

Supplementary Figure S5: The effect of different paths and baselines on the number of signifi-
cant features identified. a, Number of significant meta-features identified by different paths with
three kmeans-constitutive baseline points. b, Number of significant meta-features identified by dif-
ferent paths with three closest-constitutive baseline points. c, Number of significant meta-features
identified by different paths with three random-constitutive baseline points.
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Supplementary Figure S6: Overlap of significant features found by encoded-zero and median
baselines. The plot shows various intersections of features identified as significant using O-L-IG,
O-N-IG, H-L-IG and H-N-IG paths for encoded-zero and median-constitutive baselines.
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Supplementary Figure S7: Calibration of p-value distribution. Cumulative distribution of p-values
for all meta-features using two random group of splicing events (one-sided t-test; n = 781 pairwise
comparisons). The distribution of p-values is close to random (diagonal), indicating that empirical
distribution of p-values is well calibrated.
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